Biodiesel Cost Optimizer ® Least Cost Biodiesel Composition Calculation

Biodiesel Cost Optimizer model

Ignace Debruyne, PhD ignace.debruyne@advalvas.be

A biodiesel blend cost optimization tool V.071113 - This program is a single stand-alone license to

 Ib6A Ignace Debruyne & Associates V.O.F.

 The data are property of Ignace Debruyne & Associates and are not to be distributed without permission of Ignace Debruyne & Associates.

 Ib6A Ignace Debruyne & Associates V.O.F.

 Haverhnisstraat 28, B-8870 Izegem (Belgium)

 Tel + 32 (0)51 31 12 74 Fax + 32 (0)51 31 56 75

 KBC Bank, Izegem 465-0130991-73 (EUR)

 BAN BE27 4650 1309 9173 (EUR)

 BAN BE27 4650 1309 9173 (EUR)

 BAN BE21 4650 1309 9176 (USD)

 C) ignace debruyne@advalvas.be

Click this title frame to continue

Standards: Raw material or Process (1)

	ASTM D-6751-07a	EN 14214:2003	Units
Application	FAMAE	FAME	
Density at 15°C	-	0.86 -0.90	g/cm³
Viscos. 40°C	1.9-6.0	3.5-5.0	mm²/sec.
Distillat.Temperature, AET, 95%	90% @ 360°C	-	°C
Flash Point	>130 (150 av.) or methanol <0.20 %mass	>120	°C
Flash Point (closed cup)	>93	-	°C
CFPP	-	*country specific	°C
Pour point	-	-	°C
Cloud point	report customer	-	°C

Raw material dependent
Process dependent

Standards: Raw material or Process (2)

	ASTM D-6751-07a	EN 14214:2003	Units
Application	FAMAE	FAME	
Sulfur	<0.0015 (S15), <0.05 (S500)	<10 mg/kg	% mass
CCR 100%	-	-	% mass
10% dist. resid.	-	<0.3	% mass
Sulfated ash	<0.02	<0.02	% mass
(Oxid) Ash	-	-	% mass
Water mg/kg	<0.050% vol. (water & sediment)	<500	mg/kg
Total contam. mg/kg	-	<24	mg/kg
Cu-Corros. 3h/50°C	<no.3< td=""><td>1</td><td></td></no.3<>	1	
Oxidation stability hrs;110°C	3 hours min	6 hours min	h
Cetane No.	>47	>51	
Neutral. No. (Acid Value)	<0.50	<0.50	mg KOH/g

Raw material dependent Process dependent

Standards:

Raw material or Process (3)

	ASTM D-6751-07a	EN 14214:2003	Units
Application	FAMAE	FAME	
Methanol	<0.20 or Flash Point 130 min	<0.20	% mass
Ester content	-	>96.5	% mass
Monoglyceride	-	<0.8	% mass
Diglyceride	-	<0.2	% mass
Triglyceride	-	<0.2	% mass
Free glycerol	<0.020	<0.02	% mass
Total glycerol	<0.240	<0.25	% mass
lodine No.	-	<120	
Linolenic acid ME	-	<12	% mass
C18:3 and high. unsat.acids	-	-	% mass
C(x:4) & greater unsaturated esters	-	<1	% mass
Phosphor	<0.001% mass	<10	mg/kg
Ramsbottom carbon residue	<0.050	-	% mass
Carbon residue	<0.050% by mass	-	
Gp I metals (Na,K) mg/kg	<5	<5	mg/kg
Gp II metals (Ca,Mg) mg/kg	<5	<5	mg/kg
Alkalinity mg/kg	-	-	mg/kg

Raw material dependent

Process dependent

Standards (Summary)

- Some Specifications are exclusively related to the Process, incl. Downstream or Upstream Treatment:
 - Presence of contaminants or residual raw material (fractions)
- Other Specifications are Primarily Determined by the Raw Material Choice
 - Density, Viscosity, Cold Flow properties
 - Sulfur, Phoshorus, FAC, and Ester content
 - Iodine Value, Oxidation Stability, Cetane Number
 - Heat of Combustion, Emissions

Biodiesel Fuel Blend Modeling

Calculation of

- Cetane Number
- Density
- □ Viscosity
- Combustion energy

Estimates for

CFPP = Cold flow behavior
 OSI = Oxidation Stability
 Always at the lowest cost

Critical Aspects

- Lower energy content: higher consumption
- Lower oxidation stability
- Higher viscosity at lower temperature
- Risk of crystallization and filter plugging

Why are vegetable oil derivatives suitable as diesel fuel?

- Conventional diesel fuel
 - Boiling range: 180-340°C
 - Composition: n-alkanes, cycloalkanes, alkylbenzenes, polyaromatic compounds
 - Quality: Cetane Number (CN) range 40-100
 - The Cetane Number indicates which oils could be suitable as alternative diesel

Cetane Number (CN) is based on a linear set of blends of cetane in
 α -methyl naphtaleneCetane or hexadecane ($C_{16}H_{34}$ = fast ignition)CN 100
CN 100 α -Methyl naphtalene ($C_{11}H_{10}$ = ignition delay)CN 0

Iodine Value calculation

Methyl ester of the following acids	Percentage % m/m	Factor	Contribution
Myristic C14:0	0,3	0	0
Palmitic C16:0	4,0	0	0
Palmitoleic C16:1	1,1	0,950	1,0
Stearic C18:0	2,0	0	0
Oleic C18:1	60,5	0,860	52,0
Linoleic C18:2	19,8	1,732	34,3
Linolenic C18:3	9,4	2,616	24,6
Eicosanoic C20:0	0,4	0	0
Eicosenoic C20:1	0,7	0,785	0,6
Docosanoic C22:0	0,7	0	0
Docosenoic C22:1	1,1	0,723	0,8
		Calculated lodine Value	113,3

Based on AOCS Cd 1c-85; FAME ≈ TAG

Oxidation stability modeling

- FAME oxidation stability is directly linked to origin of raw materials, i.e. FAC and presence of natural antioxidants
 - PUFA FAME have a much lower oxidation stability than MUFA or SAFA FAME
 - Distilled FAME = low oxidation stability, since all natural antioxidants are removed
- Problems:
 - Oxidation is not a linear reaction
 - Natural [or added] antioxidants have limited capacity

How to predict Oxidative Stability?

OCL VOL 3 Nº 5 SEPTEMBRE/OCTOBRE 1996

Interpreting the oil stability index*

Albert J. DIJKSTRA*, Pieter J. MAES, Dirk MEERT, Wouter MEEUSSEN

Abstract: It has been found that the Oil Stability Index (OSI) as determined with a Rancimat apparatus on blends of triglyceride oils and fats can be expressed as :

N.V. Vandemoortele Coordination Center, Group R & D Center, Prins Albertlaan 79, B-8870 Izegem, Belgium

$$R = \frac{\sum_{i} x_{i} a_{i}}{\sum_{i} x_{i} v_{i}}$$

wherein R = OSI value of the blend

 $x_{\rm r} = mass$ fraction of component i

 $a_i = net anti oxidative property of component i$

 $v_i = rate of oxidation of component i$

v_i oxidation rate = different for saturated, mono-, di- and tri-unsaturated fatty acids

 a_i antioxidant factor = different for different raw materials

CFPP Cold Filter Plugging Point

EN14214; only when used as B100

	Temperate climates											
					Limits							
Property	Unit	Grade Grade A B		Grac C	le Gr	ade (D	Grade E	Grade F	Test method ^a			
CFPP	°C, max.	+5	0	-5		10	-15	-20	EN 116			
^a See also	^a See also 5.5.1. Arctic climates											
Property		Units		class 0	class 1	class 2	class 3	class 4	Test method ^a			
CFPP		°C, max		-20	-26	-32	-38	-44	EN 116			
^a See also 5.5.1.												

The market evolves to two types of B100 Biodiesel to be used in (B2-B30) blends with fossil diesel having the required CFPP after additivation

- B100 for blends with CFPP = 0° C in Summer
- B100 for blends with CFPP = -10°C for Winter п

How much saturates are acceptable to prevent crystallization?

LEFT: SME Winterization on lab scale in hexane to remove SAFA methyl esters [is not used in daily practice because of the poor yield]
 BELOW: Winterization in hexane shows that around 10% SAFA from SME is close to the acceptable limit for stability at -20°C

Source: Reducing the Crystallization Temperature of Biodiesel by Winterizing Methyl Soyate Inmok Lee, Lawrence A. Johnson, and Earl C. Hammond, IAOCS. Vol. 73. no. 5 (1996)

||||D)(

TABLE 6

Fatty Acid Compositions of Fractions from Methyl Esters of Normal Soy Oil Winterized in Hexane

Winterization		Temperature (°C)	Fatty acid (%)							
step	Fraction	of winterization	16:0	18:0	18:1	18:2	18:3	Saturates		
	Unfractionated		10.5	4.1	23.0	54.0	7.6	14.6		
1	Liquid	-21.5	8.5	2.7	24.5	56.3	8.0	11.2		
2	Liquid	~25.0	5.8	1.6	25.5	58.8	8.4	7.4		
3	Liquid	-28.4	4.8	1.2	25.9	59.6	8.4	6.0		
1	Crystals	-21.5	31.8	14.8	13.7	33.2	4.5	46.6		
2	Crystals	-25.0	30.3	11.9	16.5	36.2	5.1	42.2		
3	Crystals	-28.4	25.0	8.1	18.8	42.2	6.0	33.1		
LSD ²			0.2	0.1				0.2		

"Least significant difference at P < 0.05.

Crystallization Modeling Issues

- Crystallization is a thermodynamic process driven by basic physical characteristics of FAME present
- Nucleation onset is very difficult to predict
- Presence of high melting minor components can severely affect crystallization onset and kinetics
 - Saturated MG
 - Sterol Glycosides (SG)
 - → Haze formation
 - Combination of high melting FAME, Sterol Glucosides (SG), bound glycerine, and free sterols

Possible Strategies:

- 1. Apply a pragmatic approach: e.g. SAFA+TFA limit
- 2. Fine-tuning possible for specific blend ranges using multivariate model predicting CFPP based on the FAME composition

The Effect of Minor Components can at best be Studied, not Predicted

TABLE 1

Combinations of components added to distilled soy biodiesel vs. cloud points and filter times obtained *

Com	ponents	added, pp	om	Responses		
MG	SG	Soap	Water	CP, °C	Filter time, s	
0	40	0	500	1.4	1022	
10000	0	40	500	3.6	107	
10000	40	20	0	2.1	904	
0	0	0	500	0.6	83	
10000	20	40	0	2.4	868	
0	40	40	0	0.3	1412	
0	0	40	0	1.6	488	
10000	40	40	500	3.9	3562	
5000	40	0	0	0.3	440	
10000	0	0	0	1.8	97	
10000	20	0	500	2.3	2139	
0	20	0	0	0.4	87	
10000	40	0	250	2.2	895	
5000	0	20	250	1.4	201	
0	20	40	500	0.4	1531	
5000	20	20	250	0.5	446	
5000	20	20	250	0.6	362	
5000	20	20	250	0.5	394	
7500	10	10	125	1.4	103	
2500	30	10	250	0.7	320	
7500	30	30	375	2.3	1207	
5000	40	40	500	1.3	2431	
0	40	0	250	0.8	982	
0	0	0	500	1.4	85	
10000	20	40	0	2.3	609	
0	40	40	0	0.4	1265	
0	0	40	0	0.6	558	
0	20	40	500	0.5	1497	
10000	0	40	500	3.6	105	
10000	40	20	0	2.3	889	

*CP = cloud point; MG = monoglycerides; SG = sterol glucosides.

14

- **Saturated Monoglycerides** (range 0-1%) have melting point at 78°C п
 - **Sterol glycosides** (range: 0-40 ppm) formed during alkaline transesterification of Soybean Oil or Palm Oil with Methanol have very **high melting point** at 300-310°C (R = H, CH_3) and **low** solubility

- Soaps (range: 0-40 ppm) Water (range: 0-500 ppm)
 - Acylated Sterol glycosides (range: up to 3000 ppm) have high melting point (close to 200°C) but also high solubility

Source: Biorenewable Resources N°4 Inform supplement Sept. 2007

Blend calculation: some background data

Fatty Acid	Fatty acid	Mol. wt. FAME	m.p. (°C)	b.p. (°C)	mbar b.p.	Cetane N°.	purity (CN)	Cetane N° (IQT)	Kinematic viscosity at 40°C (mm²/s)	OSI 70°C	OSI 90°C	ME factor	Heat of Combustion (kg-cal/mole)
8:00	caprylic	158.24	-	193		33.6	98.6					0.000	1313
10:00	capric	186.30	-	224		47.7	98.0		1.72			0.000	1625
12:00	lauric	214.35	5	266	766	61.4	99.1		2.43			0.000	1940
14:00	myristic	242.41	18.5	295	751	66.2	96.5		3.30			0.000	2254
14:1w5									2.73			1.066	2230
16:00	palmitic	270.46	30.5	415-8	747	74.5	93.6	85.9	4.38			0.000	2550
16:1w7	palmitoleic					45.0		51.0	3.67	90.0	22.1	0.950	2535
18:00	stearic	298.51	39.1	442-3	747	86.9	92.1	101.0	5.85			0.000	2859
18:1w9	oleic	296.49	-20	218.5	20	55.0		59.3	4.51	55.6	10.7	0.860	2828
18:2w6	linoleic	294.48	-35	215	20	36.0		38.2	3.65	4.6	1.2	1.732	2794
18:3w3	linolenic	292.46	-57	109	0.018	28.0			3.14	5.5	0.5	2.616	2750
20:00	arachidic								7.80			0.000	3165
20:1w9	gadoleic	352.60	-	221-5		82.0			5.77	57.2	13.0	0.785	3454
20:2w6												1.570	3150
20:3w6												2.355	3150
20:4w6	arachidonic											3.140	3150
20:3w3												2.355	3150
22:00	behenic											0.000	3470
22:1w9	erucic								7.33	59.5	13.9	0.723	3450
24:00	lignoceric											0.000	3775
22:6w3	DHA											2.169	3450
24:1w9	nervonic											0.671	3800
TFA (C18:n)									5.50				

Data in italic defined by extrapolation

Biodiesel Cost Optimizer ® Least Cost Biodiesel Composition Calculation

Biodiesel Cost Optimizer model

A biodiesel blend cost optimization tool

V.071113 - This program is a single stand-alone license to
 ID&A Ignace Debruyne & Associates V.O.F.
 The data are property of Ignace Debruyne & Associates and are not to be distributed without permission of Ignace Debruyne & Associates.

Ignace Debruyne & Associates V.O.F. Haverhuisstraat 28, B-8870 Izegem (Belgium) Tel + 32 (0)51 31 12 74 Fax + 32 (0)51 31 56 75 KBC Bank, Izegem 465-0130991-73 (EUR) KBC Bank, Izegem 465-0130994-76 (USD) D ignace.debruyne@advalvas.be

R.P.R. Kortrijk VAT BE 0462.135.912 Mobile +32 (0)476 46 07 98 IBAN BE27 4650 1309 9173 (EUR) IBAN BE91 4650 1309 9476 (USD) (Swift/BIC: KRED BEBB)

Blends of SBO, RSO and PaOil

Prices 20 Sep 200	Prices 20 Sep 2007				\$828			\$/MT	\$/MT	_
		SAFA+TFA	SBO	RSO	PaO	IV	CN		Profit	
		7.2	0	101.5	0	116.2	50.3	1056		
Winter		8.0	3.4	97.5	0.7	116.4	50.3	1053	3	
		9.0	8.6	90.8	2.2	116.4	50.3	1048	8	
	10.0	13.8	84.2	3.8	116.3	50.3	1042	14		
12.0		12.0	24.3	70.8	6.8	116.2	50.2	1032	24	
		14.0	34.7	57.4	9.9	116.1	50.5	1021	35	
		16.0	45.2	43.9	13.1	116.0	50.5	1010	46	
Summer		19.0	61.0	23.7	17.7	115.9	50.7	994	<mark>62</mark>	
Cumici		22.0	76.9	3.3	22.5	115.7	50.8	978	78	
		25.0	72.2	0.0	30.8	109.7	52.1	965	91	
		30.0	57.6	0.0	45.9	97.8	54.7	946	110	

[4.2 parts SBO + 1 part palm oil] behave as RSO Price benefit is moderate

Blend calculation (+oxidation stability)

			-		-	•				
	Fatty Acid	Fatty acid	Mol. wt. FAME	SBO Soybean	RSO Canola Rapeseed Oil	SFO Sun- flower	Palm oil crude	Recycled Oil "G"	BLEND	EN 14214
1										
24	TFA (C18:n)			0.2	0.2	0.2	0.1	4.0	2.1	
25			SUM	99.9	99.9	99.1	99.6	100.0	99.8	
26		C	:16+18+20 + TFA	14.7	7.5	10.0	49.2	22.9	15.0	SAFA+TFA=0K
27	FFA, Polymer content & refinery loss			2.0	1.5	1.5	5.0	5.0	3.3	
28			Measured CN	46.2	50.0	46.6	63.0	53.0		
29			Measured IV	134.0	116.0	135.0	53.0	100.0		
30	\$/MT	CIF/FOB	R'dam (crude)	984	1040	1330	828	700	905	-151 \$ per MT biodiesel
31		An	tioxidant factor	95.4	57.0	53.6	60.0	60.0	58.4	,
32	Calculated CN		46.9	50.2	46.2	64.5	53.9	52.0	CH = OK	
33	Calc	ulated Kiner	matic Viscosity	3.99	4.22	3.99	4.40	4.30	4.26	Viscosity=0K
34	Calculated Heat of Combustion			2776	2815	2788	2692	2780	2801	100%
35		Calculated IV		134.2	116.0	134.6	52.1	100.4	108.5	IV = OK
36		0).S.I. (estimate)	5.6	0.3	3.0	19.7	7.1	6.7	OSI = OK
37			BLEND 🧹		53.4			49.9	103.3	vs.RME
38	price factor (0- 100)	C16+18+20 + TFA limit	This cell is minimized	SBO Soybean	RSO Canola Rapeseed Oil	SFO Sun- flower	Palm oil crude	Recycled Oil "G"	BLEND	Solve
39	100%	15.0	-139.4		1	1	1	1		
40			10	This		Light Blue	open for INPU	T CHANGE		
41		C /		column is		Green	SOLVER value	es for CN, Kiner	natic viscosity,	MT A+TFA (
42		$(\pi \mu$		maximized		Orange	set on ZERO k	LVER		
43						INPUT: Copy R	aw Material co	lumns directly fi	rom "Ravv Mate	iral Input Data" worksheet, or ii
44		L	2_2							
45	V. 071004 ID	в			52.6			47.4		
	29/11/2007	18								DEAC

Blend calculation (+oxidation stability)

	-	0	U U		L .	I		1.4		F	
	Fatty Acid	Fatty acid	Mol. wt. FAME	SBO Soybean	RSO Canola Rapeseed Oil	SFO Sun- flower	Palm oil crude	Recycled Oil "G"	BLEND	EN 14214	
1											
24	TFA (C18:n)			0.2	0.2	0.2	0.1	4.0	0.9		
25			SUM	99.9	99.9	99.1	99.6	100.0	99.7		
26		0	:16+18+20 + TFA	14.7	7.5	10.0	49.2	22.9	15.0	SAFA+TFA=0K	
27	FFA, P	olymer contei	nt & refinery loss	2.0	1.5	1.5	5.0	5.0	2.6		
28			Measured CN	46.2	50.0	46.6	63.0	53.0			
29			Measured IV	134.0	116.0	135.0	53.0	100.9			
30	\$/MT	CIF/FOB	R'dam (crude)	984	1040	1330	828	700	976	-80 \$ per MT biodiesel	
31		An	tioxidant factor	95.4	57.0	53.6	60.0	30.0	52.1		
32			Calculated CN	46.9	50.2	46.2	64.5	53.9	52.5	CII = OK	
33	Calc	ulated Kiner	matic Viscosity	3.99	4.22	3.99	4.40	4.30	4.30	Viscosity=0K	
34	Calculated Heat of Combustion			2776	2815	2788	2692	2780	2799	100%	
35			Calculated IV	134.2	116.0	134.6	52.1	100.4	106.2	IV = OK	
36		C).S.I. (estimate)	5.6	6.3	3.0	19.7	3.5	6.3	OSI = OK	
37			BLEND 🧹	0.0	71.7		11.1	19.9	102.6	vs.RME	
38	price factor (0- 100)	C16+18+20 + TFA limit	This cell is minimized	SBO Soybean	RSO Canola Rapeseed Oil	SFO Sun- flower	Palm oil crude	Recycled Oil "G"	BLEND	Solve	
39	100%	15.0	-65.8		1	1	1	1			
40			10	This		Light Blue	open for INPU	T CHANGE			
41		GI	$A(\mathbf{C})$	column is		Green	SOLVER value	es for CN, Kinen	natic viscosity,	MT A+TFA (
42	1 1 1	$(\pi \mu$		maximized		Orange	set on ZERO k	pefore using SO	LVER		
43						INPUT: Copy R	avv Material co	lumns directly fr	rom "Ravv Mate	iral Input Data" worksheet, or ir	
44											
45	V. 071004 ID	В			70.6		10.5	18.9			
	29/11/2007 19										

Biodiesel Cost Optimizer

- Biodiesel based on raw material blends can be much more economic than pure RME or pure SME and still comply with EN14214 or ASTM 6751
- In summer conditions almost any raw material can be used for FAME production
- Using low cost components can generate significant price benefits
- Oxidation stability of the final product will affect raw material choice (OSI can be corrected with antioxidants!)
- In winter, CFPP or SAFA+TFA constraint will limit raw material choice, but B2 or B30 allows plenty of flexibility; special additives can generate required Oxidation and Crystallization stability
- □ Always: lowest cost blend of the day

